Mathematics Narrative

"Beauty is the first test; there is no permanent place in the world for ugly mathematics." G.H.Hardy)

We chose to begin with algebraic notation in year 7 instead of sequences in the White Rose Curriculum as we believe algebra underpins everything we do in Maths. The next topic (equality and equivalence) ties in nicely as it uses the algebraic notation just learned to begin to solve equations, followed by Sequences, linking the multiplicative relationship between numbers in some non-linear sequences, additive relationships between linear sequences and then considering the abstract sequences that f ollow neither of these rules, interleaving us back to multiplicative relationships that we taught just before the break. More advanced classes began to consider sequences as an algebraic relationship, being able to link $5,9,13,17$, to the algebraic rule $4 n+1$ etc.

Place value, which often comes first in many year 7 Curriculum builds on the idea of sequencing to allow us to properly order numbers, either by being able to place the correct inequality between two numbers to identify the largest (which also leads us back to the algebraic notation which permeates the Curriculum) and then follow a sequence to order integers, directed numbers and decimals. Once the idea of a decimal being the description of a number which is not an integer and may be the result of one number being divided by another, we can introduce the concept of a fraction. We will spend the remainder of this term learning to convert decimals to and from fractions (and percentages) and begin to calculate with fractions using the four operations.

After Christmas we touch on finding fractions of amounts to link the fractional relationship between two numbers into a more practical numerical value solution before moving on to solving problems with addition and subtraction and then solving problems with multiplication and division as the algebra is either inherent or implicit in the problems posed, trading the more abstract algebra that they'd been concentrating on for the previous term with a more practical 'doing' type of Mathematics, however the algebra is interwoven in.

We then combine the notion of having a firm numerical solution to a problem with the pure algebra learnt in the first term to solve one and then multistep equations and introducing the concept of directed numbers within. The process of following algebraic rules to solve an equation and the understanding and memorisation of the steps required links us then to reapply this to the combination of fractions using all four operations.

Following the Easter break will focus more on Geometric reasoning where we begin by bringing back the ideas of geometric notation that we learned all the way back in Autumn. Once the grammar of the topic has been taught (180 on a straight line, 360 around a point etc) we can begin solving problems where the unknowns are always described algebraically, ensuring that the algebraic notation stays present throughout every topic. Students in classes who progress more quickly will be able to interleave constructions with their
discovery of angles in parallel lines and angles in polygons, being able to accurately see the angles they are working out using both the measurement skills they learnt earlier and the algebraic calculation of angles. We then move on to number sense where students will revisit more basic skills to hone their abilities and allow teachers to diagnose and solve common misconceptions and gaps in those vital skills. Finally, year 7 will finish considering prime numbers and proofs, exploring more abstract concepts, again algebraically, and being empowered to access the more scholarly side of Mathematics.

Students are familiar with Sparx Maths - https://www.sparxmaths.uk/ If they have any problems logging - please contact Mr. Howard (Head of Maths)

Fractions	Use common factors to simplify fractions; use common multiples to express fractions with the same denominator. Convert between mixed numbers and improper fractions. Compare and order fractions. Add and subtract fractions.	Sparx Maths Clip: M335 Sparx Maths Clip: M939 Sparx Maths Clip: M601 Sparx Maths Clip: M835 Sparx Maths Clip: M931 Sparx Maths Clip: M645
Number	Long multiplication of up to 4 digit numbers by 1 or 2 digit numbers. Short division, up to 4 digits by 1 digit and 2 digit numbers (including remainders). Multiply and divide numbers by 10, 100 and 1000. Add and subtract with negative numbers. Multiply and divide with negative numbers.	Sparx Maths Clip: M187 Sparx Maths Clip: M354 Sparx Maths Clip: M113 Sparx Maths Clip: M106 Sparx Maths Clip: M288
Decimals	Read and write decimal numbers as fractions. Convert percentages to fractions and decimals. Multiply any decimals by one or two digit numbers. Multiply two decimal numbers. Divide decimals by whole numbers.	Sparx Maths Clip: M958 Sparx Maths Clip: M264 Sparx Maths Clip: M553 Sparx Maths Clip: M803
Percentages	Know that percentage means "out of 100". Write percentages as fractions. Convert percentages to fractions and decimals. Finding percentages of amounts - non-calculator methods. Percentages: Write one value as a percentage of another. Find the percentage change to a value.	Sparx Maths Clip: M695 Sparx Maths Clip: M684 Sparx Maths Clip: M437 Sparx Maths Clip: M905 Sparx Maths Clip: M476
Rounding	Round numbers with two decimal places to a whole number, nearest 10, 100 and 1000. Round numbers (1) and measures to any number of significant figures or decimal places.	Sparx Maths Clip: M431 Sparx Maths Clip: M994 Sparx Maths Clip: M131
Numbers		

\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { formulae. Simplify and manipulate algebraic expressions } \\
\text { by collecting like terms. Expand with single brackets. }\end{array} & \text { Sparx Maths Clip: M237 } \\
\hline \begin{array}{l}\text { Linear } \\
\text { Equations }\end{array} & \begin{array}{l}\text { Use algebraic methods to solve linear equations in one } \\
\text { variable. Use algebraic methods to solve linear } \\
\text { equations in one variable. }\end{array} & \begin{array}{l}\text { Sparx Maths Clip: M707 } \\
\text { Sparx Maths Clip: M634 } \\
\text { Sparx Maths Clip: M647 }\end{array} \\
\hline \text { Substituting } & \begin{array}{l}\text { Substitute numbers into formulae, equations and } \\
\text { expressions, including scientific formulae. }\end{array} & \begin{array}{l}\text { Sparx Maths Clip: M979 } \\
\text { Sparx Maths Clip: M327 }\end{array} \\
\hline \text { Measurs }\end{array}
$$ \quad \begin{array}{l}Change freely between related standard units (for

example time, length, area, volume/capacity and mass)\end{array}\right)\)| Sparx Maths Clip: M772 |
| :--- |
| Sparx Maths Clip: M728 |$|$| Solving
 Problems | Use unit pricing to solve problems (e.g. 3 apples cost
 £1.80, how much do 5 apples cost? Find the price of 1
 apple first). | Sparx Maths Clip: M901
 Sparx Maths Clip: M681 |
| :--- | :--- | :--- |
| Linear
 Graphs | Complete a table of values for a function and use it to
 draw linear graphs. | Sparx Maths Clip: M932 |

